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Peristaltic flow in two-dimensional channels with sinusoidal waves is analysed. Under 
the assumption of creeping motion, the problem is formulated using the boundary 
integral method for Stokes flow. The effect of channel width, wave amplitude, phase 
shift, and mean pressure gradient on the streamline pattern and the properties of the 
flow is considered. The results are discussed with reference to various physiological 
and engineering processes. It is suggested that under the quasi-steady approximation, 
peristaltic flow with a varying mean pressure gradient offers an efficient method for 
molecular-convective transport. 

1. Introduction 
Peristaltic flows are generated by the propagation of waves along the flexible walls 

of a channel. These flows provide an efficient means for sanitary fluid transport and 
thus, they are exploited in industrial peristaltic pumping. In  physiological and 
medical applications, peristaltic flows are used for the transport of blood within small 
blood vessels or artificial blood devices. 

Two interesting phenomena associated with peristaltic flows are fluid trapping and 
material reflux. The former describes the development and downstream transport of 
free eddies, called fluid boluses. The latter refers to the net upstream convection of 
fluid particles against the travelling boundary waves. These two phenomena are 
of great physiological significance, as they may be responsible for thrombus forma- 
tion in blood, and pathological transport of bacteria. From the standpoint of fluid 
mechanics, these phenomena demonstrate the complexity, but also motivate the 
fundamental study of peristaltic flows. 

Taylor (1951) studied peristaltic flows with reference to swimming of microscopic 
organisms. Subsequent studies were motivated by interest in physiological fluid 
transport, and the realization that peristaltic pumping may be used for the efficient 
transport of slurries, and sensitive or corrosive fluids. Jaffrin & Shapiro (1971) 
reviewed early work including experimental observations and asymptotic solutions. 
In the following years many studies appeared analysing among other topics particle 
transport in peristaltic flows (Hung & Brown 1976), effect of peripheral layers 
(Shukla, Parihar & Rao 1980), and effect of non-Newtonian characteristics, (Bohme 
& Friedrich 1983). A few numerical studies have also been presented. Tong & Vawter 
(1972) used a finite element method to conduct a preliminary study in the limit of 
creeping motion. Brown & Hung (1977) used a finite difference scheme based on 
curvilinear coordinates, and concentrated on the effects of inertia and on the 
mechanical energy transfer characteristics. Takabatake & Ayukawa (1982) presented 
finite different solutions at  moderate Reynolds numbers, and demonstrated the 
limitations of previous asymptotic expansions. It is clear that the absence of an 
efficient numerical method has prohibited an extended analysis for general flow 
condi tions. 
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In  this paper we consider peristaltic flow in two-dimensional channels under the 
assumption of creeping motion. Addressing this basic assumption of our analysis, we 
note that although the absence of inertia may depend on the particular application, 
it constitutes an accurate approximation for many physiological processes (Jaffrin 
& Shapiro 1971). For instance, Shapiro, Jaffrin & Weinberg (1969) as well as Lykoodis 
& Roos (1970) estimate the Reynolds number of peristaltic flow in the human ureter 
to be of the order of unity, demonstrating the insignificance of inertial forces. The 
goal of our analysis is then to describe the structure and properties of the flow as 
a function of geometrical channel characteristics and flow conditions. The use of the 
boundary integral method for Stokes flow constitutes an essential part of our analysis 
by allowing a detailed, accurate, and relatively extensive investigation. Our 
calculations complement previous efforts and reveal certain novel flow phenomena. 

In  $2 we formulate the problem and discuss the method of solution. In $3 we study 
pure peristaltic flow, and in $4 we consider the interaction between peristaltic and 
pressure driven motion. We conclude in $5 by briefly discussing peristaltic flow with 
asymmetric waves. 

2. Formulation of the problem 
We consider periodic flow in a two-dimensional channel with oscillating walls, 

under conditions of creeping motion. For extensible walls with sinusoidal peristaltic 
waves, we assume that the y-position of fluid particles on the upper and lower wall 
is given by 

y1 = w+a, cos(k(z-ct)-2$), 

y, = -w-a, cos(k(2-ct)), 

respectively, while their 2-position remains constant (figure 1). In the above 
equations k is the wavenumber, c is the wave speed, and $ is the phase difference 
between the two walls, 0 < $ < iz. The case $ = 0 corresponds to symmetric waves, 
whereas the case + = corresponds to asymmetric, bending waves (Wilson & Panton 
1979). Since in a frame of reference moving a t  the wave speed c the flow is steady, 
it is convenient to introduce the new coordinate z = x-cct, and to consider the flow 
in the ( z ,  y)-plane. 

In general, the flow may be driven by two independent mechanisms : the peristaltic 
motion and the presence of a mean pressure gradient G = -dP/dx. The relative 
strength of these two components may be expressed by the parameter K = Gw2/pc. 
Under the above definitions, we study the flow as a function of K, the geometrical 
parameters w/A, aJA, a,/& and the phase shift $. 

A t  low Reynolds numbers, Re = cw2/vA, the flow is governed by the Stokes 
equation and hence, the problem may be formulated using the boundary integral 
method for Stokes flow. For details on the mathematical formulation, notation, and 
the numerical method, see Pozrikidis 1987 $52 and 3. Here we briefly mention that 
the method requires the discretization of one period of the upper or lower wall in a 
number of straight segments, and the local approximation of the force as a constant 
function, and of the velocity as a linear function over each segment. Given the 
boundary velocity, the boundary force is evaluated using a collocation method which 
reduces the problem to the solution of a system of linear algebraic equations. The 
choice of fundamental solution required in the above procedure is dictated by the 
wave characteristics. For a, = a, the flow is symmetric with respect to the origin and 
hence, we use the fundamental solution Sspp preserving this symmetry ; similarly, 
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FIQURE 1.  Peristaltic flow in a two-dimensional channel with oscillating walls; definition sketch. 

for a, = 0, we use the fundamental solution Swp. For finite values of the mean 
pressure gradient G, we obtain the flow by an appropriate superposition of the 
pure peristaltic and the pure pressure driven component, which are calculated 
independently. 

3. Pure peristaltic flow 
We begin by considering pure peristaltic flow, K = 0, with equal wave amplitudes, 

a, = a2 = a, concentrating on the symmetric case, q5 = 0. Asymptotic analysis for 
small w / h  shows that in narrow channels, the velocity profile over any cross-section 
is nearly parabolic (Shapiro et al. 1969). Onset of trapping is indicated by the 
appearance of a stagnation point at the channel centreline at the wave frame of 
reference, occurring approximately when a /w = 0.60. This is in excellent agreement 
with our numerical results. Typical streamline patterns, at both the wave and the 
stationary frame of reference, are shown in figure 2. In  all cases, the velocity profile 
at the crest and trough of the walls is nearly parabolic in agreement with the 
asymptotic solution (figure 3a).  

Let us consider in some detail the size of the development fluid boluses. This 
information is of physiological and engineering interest, as fluid recirculation owing 
to onset of boluses may cause thrombosis of blood, or pronounced, undesired, 
chemical conversion in reactive fluids. We define the bolus height h as the distance 
between the dividing streamline enclosing the bolus, and the axis of symmetry at  
x = 0, and plot it as a function of wave amplitude (figure 4). There is no bolus for 
small wave amplitudes but then, as the wave amplitude exceeds the critical value 
a/w = 0.60 the bolus height h/(w+a)  increases very fast, and a t  complete occlusion, 
a/w = 1, it  tends to unity. This rapid eddy expansion is reminiscent of that for wall 
eddies in steady flow as discussed in Pozrikidis (1987, see figure 6). Thus, it indicates 
that increased sensitivity of viscous eddies with respect to the flow geometry is a 
general characteristic of creeping motion. 

The distribution of shear stress within the fluid is important in applications 
involving the transport of sensitive materials. High shear stress may cause destruc- 
tion of blood cells or emulsion drops. To assess the magnitude of shear stress in the 
flow, we plot the shear stress along the walls (figure 5a).  Note that since the wall 
velocity is finite, a change in sign of the shear stress does not imply flow reversal. 
We observe increased values at the narrow regions of the channel, even for waves 
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FIGURE 2. Streamline patterns for peristaltic flow in a channel of width w/A = 0.10, at the wave 
(left) and the stationary (right) frame of reference; wave amplitude: ( a )  a /h  = 0.020, (a) 
a/A = 0.050, (c) u/A = 0.080. 

of moderate amplitude, defining limits on wave amplitudes for the transport of 
sensitive fluids. 

Proceeding, we consider flow in wider channels. Our calculations show that the 
streamline patterns are similar to those for narrow channels, discussed above. 
However, the velocity profiles significantly deviate from the parabolic shape. As an 
example, in figure 3 ( b )  we present velocity profiles at the trough and crest of the 
moving wave, for w/h = 0.50. It is important to remember that the deviation from 
the parabolic shape is not due to inertial effects, but to the curvature of the walls. 
Velocity profiles in a very wide channel are shown in figure 3 (c), and are in excellent 
agreement with the asymptotic analysis of Taylor (1951). This analysis is valid for 
wide channels with small amplitude waves, i.e. large w / h  and small a/h.  Note 
that the velocity far away from the walls tends to a constant value, equal to 
c(ka)2[1 - 19(ka)2/16]/2+0((ka)s). Returning to the w / h  = 0.50 channel, we note 
that trapping occurs at a critical wave amplitude, approximately equal to a/w = 0.50. 
The size of the trapped fluid bolus increases rapidly with the wave amplitude as in 
the narrow channel case (figure 4). The shear stress along the wall exhibits oscillatory 
behaviour, showing both positive and negative extreme values, figure 5 (b). 

The mean flow rate owing to the peristaltic motion is of particular interest in 
commercial fluid transport. It is clear that the flow rate vanishes for zero wave 
amplitude, and becomes maximum at full occlusion, a/w = 1. The behaviour for 
intermediate wave amplitudes depends on both the channel width and wave 
amplitude, as illustrated in figure 6. For small channel widths, the flow rate increases 
initially at a parabolic, and then at an almost linear rate with the wave amplitude. 
This is in agreement with perturbation solutions (Shapiro et al. 1969). For large 
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FIGURE 3. Velocity profiles at wave trough (left), and wave crest (right) at the stationary frame, 
in channels of (a) width w / A  = 0.10, and wave amplitude a/A = 0.020,0.050,0.080; (b)  w/A = 0.50, 
and a/A = 0.100, 0.250, 0.400; ( c )  w/A = 3.00, and a / A  = 0.010. 
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FIGURE 4. Size of free eddies (fluid boluses) at the wave crest as a function of wave amplitude for 
(i) w/A = 0.10, (ii) w/A = 0.50. 

channel widths, the flow rate increases almost linearly with the wave amplitude. 
Trapping does not have any apparent effect on the mean flow rate. Overall, our 
calculations suggest that for a specified wave amplitude to channel width ratio a/w,  
wide channels provide higher transport rates. 

So far we have considered symmetric peristaltic waves with zero phase shift, qi = 0. 
Now, we wish to investigate the effect of phase shift on the streamline pattern and 
the mean flow rate. The effect of qi on trapping is illustrated in figure 7. Increasing 
4 to in causes a rotation and relative displacement of the free eddies around the x-axis. 
Further increase results in shrinking and disappearance of these eddies. For bending 
waves, qi = in, the streamlines adjust to the curvature of the walls, in a smooth 
fashion. The effect of phase shift on the mean flow rate e/cw is illustrated in figure 
8. For narrow channels, qi has a strong effect on the mean flow rate; for the 
w/A = 0.10 channel with wave amplitude a /h  = 0.080, @/cw is drastically reduced 
by 98% as $ is increased from 0 to in. Similar behaviour is observed for wider 
channels, although the dependence of the mean flow rate on the phase shift is less 
pronounced. For the w/h = 0.50 channel with wave amplitude a / h  = 0.30, the flow 
rate is moderately reduced by 29% as $ is increased from 0 to in. As the width of 
the channel w / h  becomes very large, the effect of qi on the mean flow rate becomes 
less important, and vanishes for infinitely wide channels. We conclude that the phase 
shift may be a significant parameter in the design of peristaltic systems. 

4. Effect of mean pressure gradient 
In  many applications, fluid must be transported against a mean pressure gradient 

G = -dP/dx. This significantly alters the flow characteristics with respect to 
trapping, reflux, and mean flow rate (Shapiro et a2. 1969). 
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FIQURE 5. Shear stress along the lower wall in a channel of (a)  width w/A = 0.10 and wave amplitude 
(i) a/A = 0.020, (ii) a/A = 0.050, (iii) a/A = 0.080; ( b )  w/A = 0.50, and (i)  a/A = 0.100, (ii) 
a/A = 0.250, (iii) a/A = 0.400. 

First, we consider the effect of mean pressure gradient on trapping. Shapiro et al. 
(1969) showed that for narrow channels, increasing the opposing pressure grdient 
causes a reduction in the bolus size and eventually, collapse of the bolus into a 
stagnation point along the channel centreline, at z = 0. Thus, they suggested that 
onset of trapping is indicated by appearance of a stagnation point on the z-axis. This 
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FIQURE 6. Mean flow rate as a function of wave amplitude for peristaltic flow in a channel of (i) 
0, w / A  = 0.10, (ii) A, w/A = 0.50; the dashed lines shows results of asymptotic theory for small 
w/A (Shapiro et al. 1969). 

FIQURE 7. Streamline patterns for flow in a channel with w / A  = 0.10, a/A = 0.080, at the wave 
frame of reference; phase shift: (a) q5 = 0, ( b )  q5 = ~ I C ,  (c) 4 = in, (d) q5 = in. 
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FIQURE 8. Effect of phme shift @ on the mean flow rate for (i) w/h  = 0.100, a / h  = 0.080, 
(ii) w/h = 0.500, alh = 0.3OQ; Q, is the mean flow rate at @ = 0. 

criterion was used by other investigators to resolve trapping in wider channels. To 
examine the validity of this criterion, we consider flow in a channel of w/A = 0.50 
with a/A = 0.300, $ = 0, for different values of the mean pressure ratio K = Gw2/pc 
(figure 9). As the opposing pressure field is increased, the size of the free eddies 
decreases, and at a critical point, the eddies detach, leaving a narrow passage at the 
channel centreline (figure 9 b ,  c ) .  Further increase in the opposing pressure field results 
in elimination of the free eddies. This shows that trapping is not necessarily associated 
with a stagnation point at the channel centreline. It is determined by the complex 
interaction between the peristaltic and the pressure-driven motion. 

Shapiro et aZ. (1969) showed that the presence of an opposing mean pressure 
gradient may cause the net upstream transport of fluid particles, i.e. material reflux. 
To establish criteria for reflux, they noticed that the motion of a fluid particle is 
periodic. The period T of a particle outside a trapped bolus is equal to the time 
required for the particle to travel a distance equal to one wavelength A along the 
z-axis; fluid particles lying on the same streamline have identical periods of motion. 
Our calculations show that during its evolution, a material line initially coinciding 
with an open streamline retains an almost sinusoidal shape, suffering compression 
and elongation at  either end. The pqths of the individual material particles constitute 
spiral lines, in agreement with previous studies. The z-distance travelled by these 
particles during one period is equal to Tc-A. This defines a mean convection speed 
u, = (Tc-A)/T, with a negative value implying reflux. Our calculations show that 
for small channel widths (increasing the oppoRing pressure gradient), reflux first 
occurs for particles near the walls of the channel and then it extends towards the 
centre of the channel. This is in agreement with the asymptotic analysis of Shapiro 
et aZ. (1969). On the other hand, for large channel widths, reflux may first occur at  
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FIQURE 9. Streamline patterns for flow in a channel with w/A = 0.50, a / h  = 0.30, in the presence 
of an opposing mean pressure gradient G, at the wave frame of reference; (a) h 2 / p c  = 0, ( b )  
cW*/pc = -0.4615, (c) detail of central region of ( b ) .  

the cha,nnel centreline. This behaviour is illustrated in figure 10, where we plot the 
distribution of mean convection speed u, /c  along the vertical line through the origin, 
for two characteristic cases. The observed variation indicates the complexity of 
Lagrangian dynamics in peristaltic systems. 

It is interesting to consider the flow due to a strong pressure gradient in the presence 
of weak peristaltic motion. This is relevant to the locomotion of microscopic 
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FIGURE 10. Mean particle convection velocity u,/c along the vertical line at z = 0, for 
(i) w/A  = 0.10, a/A = 0.080, Ctwa/pc = 20.222, (ii) w/h  = 0.50, a/A = 0.300, cW*/pc = 10.00. 

organisms in external flow. First, let us consider the limiting flow as the peristaltic 
motion ceases, i.e. K +  00. In  this limit, the flow reduces a pure pressure-driven flow 
in a symmetric channel with sinusoidal walls. Our previous analysis (Pozrikidis 1987 
$4) indicates that for large channel widths and wave amplitudes, the flow will reverse 
at the trough of the corrugations, forming wall eddies. A typical streamline pattern 
for w/A = 0.50 and a/A = 0.300 is presented in figure 11 (a).  Now, when a weak 
peristaltic component is introduced, the eddies must detach from the walls, merely 
from kinematical principles. The resulting flow pattern depends on the direction of 
wave propagation. When the mean pressure field opposes the peristaltic motion, 
K < 0, an asymmetric pair of eddies develops (figure 11 b, c). When the mean pressure 
field and the peristaltic motion act in the same direction, K < 0, the eddies expand, 
approach the channel centreline, and give rise to trapping (figure 11 d). 

The above results are valid for steady flow conditions. However, under the 
quasi-steady approximation, they may be extended for slowly varying flow con- 
ditions, i.e. low Strouhal numbers (Sobey 1980). An interesting interpretation arises 
from this observation. Consider peristaltic flow in a wide channel with large amplitude 
waves, and in the presence of a slowly varying mean pressure gradient. When the 
pressure component dominates, the flow will tend to separate at the trough of the 
wavy wall. When the peristaltic component dominates, the flow will tend to separate 
along the channel centreline. This oscillatory behaviour will enhance the fluid mixing, 
and thus, will increase the efficiency of simultaneous moleculal-convective processes 
(Sobey 1980). In  conclusion, it suggests an efficient engineering process for heat or 
mass transfer. 
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FIGURE 11.  Effect of peristaltic motion on the streamline pattern for pressure driven flow in a 
channel of w/A  = 0.50, a/A = 0.30; (a) pc/Gwp = 0, ( b )  pc/Cwa = -0.0005005, (c) detail of (a), ( d )  
pc/Cwe = 0.010204. 

5. Asymmetric waves 
In our previous discussion we considered waves of equal amplitude a, = a2 = a. 

These represent specific configurations, convenient for the mathematical analysis. In 
practice, it may be necessary to use waves of different amplitudes. We consider how 
these waves affect the flow characteristics. 
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FIGURE 12. Streamline pattern for asymmetric flow in a channel with w/A = 0.50, aJA = 0.300, 
aJA = 0, at the wave frame of reference. 

Our calculations show that asymmetric waves do not alter the basic features of 
the motion discussed previously, in agreement with the asymptotic analysis of Yin 
& Fung (1971). An example with asymmetric waves of w/A = 0.50, a,/A = 0.300, 
a J h  = 0 is shown in figure 12. We note the presence of a single fluid bolus translating 
at  the wave speed, i.e. trapping. 
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